Skip to content

vllm.model_executor.models.glmasr

GlmAsrInputs module-attribute

GlmAsrDummyInputsBuilder

Bases: BaseDummyInputsBuilder[GlmAsrProcessingInfo]

Source code in vllm/model_executor/models/glmasr.py
class GlmAsrDummyInputsBuilder(BaseDummyInputsBuilder[GlmAsrProcessingInfo]):
    def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
        num_audios = mm_counts.get("audio", 0)
        hf_processor = self.info.get_hf_processor()
        return hf_processor.audio_token * num_audios

    def get_dummy_mm_data(
        self,
        seq_len: int,
        mm_counts: Mapping[str, int],
        mm_options: Mapping[str, BaseDummyOptions] | None = None,
    ) -> MultiModalDataDict:
        feature_extractor = self.info.get_feature_extractor()
        sampling_rate = feature_extractor.sampling_rate
        num_audios = mm_counts.get("audio", 0)
        audio_overrides = mm_options.get("audio") if mm_options else None

        max_audio_len = getattr(
            self.info.get_hf_processor(), "max_audio_len", DEFAULT_MAX_AUDIO_LEN_S
        )
        audio_len = int(max_audio_len * sampling_rate)

        return {
            "audio": self._get_dummy_audios(
                length=audio_len, num_audios=num_audios, overrides=audio_overrides
            )
        }

get_dummy_mm_data

get_dummy_mm_data(
    seq_len: int,
    mm_counts: Mapping[str, int],
    mm_options: Mapping[str, BaseDummyOptions]
    | None = None,
) -> MultiModalDataDict
Source code in vllm/model_executor/models/glmasr.py
def get_dummy_mm_data(
    self,
    seq_len: int,
    mm_counts: Mapping[str, int],
    mm_options: Mapping[str, BaseDummyOptions] | None = None,
) -> MultiModalDataDict:
    feature_extractor = self.info.get_feature_extractor()
    sampling_rate = feature_extractor.sampling_rate
    num_audios = mm_counts.get("audio", 0)
    audio_overrides = mm_options.get("audio") if mm_options else None

    max_audio_len = getattr(
        self.info.get_hf_processor(), "max_audio_len", DEFAULT_MAX_AUDIO_LEN_S
    )
    audio_len = int(max_audio_len * sampling_rate)

    return {
        "audio": self._get_dummy_audios(
            length=audio_len, num_audios=num_audios, overrides=audio_overrides
        )
    }

get_dummy_text

get_dummy_text(mm_counts: Mapping[str, int]) -> str
Source code in vllm/model_executor/models/glmasr.py
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
    num_audios = mm_counts.get("audio", 0)
    hf_processor = self.info.get_hf_processor()
    return hf_processor.audio_token * num_audios

GlmAsrEmbeddingInputs

Bases: TensorSchema

Dimensions
  • bn: Batch size
  • naf: Number of audio features
  • hs: Hidden size (must match the hidden size of language model backbone)
Source code in vllm/model_executor/models/glmasr.py
class GlmAsrEmbeddingInputs(TensorSchema):
    """
    Dimensions:
        - bn: Batch size
        - naf: Number of audio features
        - hs: Hidden size (must match the hidden size of language model
          backbone)
    """

    type: Literal["audio_embeds"] = "audio_embeds"
    audio_embeds: Annotated[
        list[torch.Tensor],
        TensorShape("bn", "naf", "hs", dynamic_dims={"naf"}),
    ]

audio_embeds instance-attribute

audio_embeds: Annotated[
    list[Tensor],
    TensorShape(bn, naf, hs, dynamic_dims={naf}),
]

type class-attribute instance-attribute

type: Literal['audio_embeds'] = 'audio_embeds'

GlmAsrFeatureInputs

Bases: TensorSchema

Dimensions
  • num_chunks: Number of audio chunks (flattened)
  • nmb: Number of mel bins
  • num_audios: Number of original audio files
Source code in vllm/model_executor/models/glmasr.py
class GlmAsrFeatureInputs(TensorSchema):
    """
    Dimensions:
        - num_chunks: Number of audio chunks (flattened)
        - nmb: Number of mel bins
        - num_audios: Number of original audio files
    """

    type: Literal["audio_features"]
    input_features: Annotated[
        torch.Tensor | list[torch.Tensor],
        TensorShape("num_chunks", "nmb", "chunk_length", dynamic_dims={"chunk_length"}),
    ]
    feature_attention_mask: Annotated[
        torch.Tensor | list[torch.Tensor],
        TensorShape("num_chunks", "chunk_length", dynamic_dims={"chunk_length"}),
    ]
    chunk_counts: Annotated[
        torch.Tensor | list[torch.Tensor],
        TensorShape("num_audios"),
    ]

chunk_counts instance-attribute

chunk_counts: Annotated[
    Tensor | list[Tensor], TensorShape(num_audios)
]

feature_attention_mask instance-attribute

feature_attention_mask: Annotated[
    Tensor | list[Tensor],
    TensorShape(
        num_chunks,
        chunk_length,
        dynamic_dims={chunk_length},
    ),
]

input_features instance-attribute

input_features: Annotated[
    Tensor | list[Tensor],
    TensorShape(
        num_chunks,
        nmb,
        chunk_length,
        dynamic_dims={chunk_length},
    ),
]

type instance-attribute

type: Literal['audio_features']

GlmAsrForConditionalGeneration

Bases: Module, SupportsMultiModal, SupportsPP, SupportsLoRA, SupportsTranscription

Source code in vllm/model_executor/models/glmasr.py
@MULTIMODAL_REGISTRY.register_processor(
    GlmAsrMultiModalProcessor,
    info=GlmAsrProcessingInfo,
    dummy_inputs=GlmAsrDummyInputsBuilder,
)
class GlmAsrForConditionalGeneration(
    nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA, SupportsTranscription
):
    supported_languages = ISO639_1_SUPPORTED_LANGS

    packed_modules_mapping = {
        "qkv_proj": ["q_proj", "k_proj", "v_proj"],
        "gate_up_proj": ["gate_proj", "up_proj"],
    }

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        multimodal_config = vllm_config.model_config.multimodal_config
        self.config = config
        self.multimodal_config = multimodal_config

        self.audio_tower = GlmAsrEncoder(config.audio_config)
        self.multi_modal_projector = GlmAsrMultiModalProjector(
            config,
            quant_config=quant_config,
            prefix=maybe_prefix(prefix, "multi_modal_projector"),
        )
        self.quant_config = quant_config

        self.language_model = init_vllm_registered_model(
            vllm_config=vllm_config,
            hf_config=config.text_config,
            prefix=maybe_prefix(prefix, "language_model"),
            architectures=["LlamaForCausalLM"],
        )

        self.make_empty_intermediate_tensors = (
            self.language_model.make_empty_intermediate_tensors
        )

    @classmethod
    def get_placeholder_str(cls, modality: str, i: int) -> str | None:
        if modality.startswith("audio"):
            return "<|begin_of_audio|><|pad|><|end_of_audio|>"

        raise ValueError("Only audio modality is supported")

    def get_mm_mapping(self) -> MultiModelKeys:
        return MultiModelKeys.from_string_field(
            language_model="language_model.",
            connector="multi_modal_projector.",
            tower_model="audio_tower.",
        )

    def _parse_and_validate_audio_input(self, **kwargs: object) -> GlmAsrInputs | None:
        audio_embeds = kwargs.pop("audio_embeds", None)
        if audio_embeds is not None:
            return GlmAsrEmbeddingInputs(type="audio_embeds", audio_embeds=audio_embeds)

        input_features = kwargs.pop("input_features", None)
        if input_features is None:
            return None

        return GlmAsrFeatureInputs(
            type="audio_features",
            input_features=input_features,
            feature_attention_mask=kwargs.pop("feature_attention_mask", None),
            chunk_counts=kwargs.pop("chunk_counts", None),
        )

    def _process_audio_input(
        self, audio_input: GlmAsrInputs
    ) -> torch.Tensor | tuple[torch.Tensor, ...]:
        if audio_input["type"] == "audio_embeds":
            return tuple(audio_input["audio_embeds"])

        input_features = audio_input["input_features"]
        feature_attention_mask = audio_input["feature_attention_mask"]

        if isinstance(input_features, list):
            input_features = torch.cat(input_features, dim=0)
            feature_attention_mask = torch.cat(feature_attention_mask, dim=0)

        num_chunks = input_features.shape[0]
        chunk_counts = _normalize_chunk_counts(
            audio_input.get("chunk_counts"), num_chunks=num_chunks
        )

        audio_hidden_states = self.audio_tower(input_features).last_hidden_state
        audio_hidden_states = audio_hidden_states.reshape(
            num_chunks,
            -1,
            self.config.audio_config.intermediate_size,
        )
        audio_features = self.multi_modal_projector(audio_hidden_states)

        merge_factor = getattr(self.config, "merge_factor", DEFAULT_MERGE_FACTOR)
        conv_params = getattr(self.config, "conv_params", DEFAULT_CONV_PARAMS)

        audio_output_lengths = _get_audio_output_lengths_for_tower(
            self.audio_tower,
            feature_attention_mask.sum(-1),
            merge_factor,
            conv_params,
        )

        masked_audio_features = _flatten_audio_features_by_length(
            audio_features, audio_output_lengths
        )

        chunk_embeddings = torch.split(
            masked_audio_features, audio_output_lengths.flatten().tolist()
        )
        return _group_audio_embeddings(chunk_embeddings, chunk_counts)

    def get_language_model(self) -> torch.nn.Module:
        return self.language_model

    def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings:
        audio_input = self._parse_and_validate_audio_input(**kwargs)
        if audio_input is None:
            return []
        masked_audio_features = self._process_audio_input(audio_input)
        return masked_audio_features

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: IntermediateTensors | None = None,
        inputs_embeds: torch.Tensor | None = None,
        **kwargs: object,
    ) -> torch.Tensor | IntermediateTensors:
        if intermediate_tensors is not None:
            inputs_embeds = None

        hidden_states = self.language_model.model(
            input_ids,
            positions,
            intermediate_tensors,
            inputs_embeds=inputs_embeds,
        )
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor | None:
        return self.language_model.compute_logits(hidden_states)

    def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
        skip_prefixes = ["audio_tower.embed_positions"]
        loader = AutoWeightsLoader(self, skip_prefixes=skip_prefixes)
        return loader.load_weights(weights)

    @classmethod
    def _get_audio_token(cls, model_config: ModelConfig) -> str:
        """Get the audio token from processor.

        Similar to get_placeholder_str but returns single token.
        """
        processor = cached_processor_from_config(model_config)
        return getattr(processor, "audio_token", "<|pad|>")

    @classmethod
    def get_speech_to_text_config(
        cls, model_config: ModelConfig, task_type: str
    ) -> SpeechToTextConfig:
        processor = cached_processor_from_config(model_config)
        feature_extractor = processor.feature_extractor
        max_audio_clip_s = getattr(processor, "max_audio_len", DEFAULT_MAX_AUDIO_LEN_S)
        return SpeechToTextConfig(
            max_audio_clip_s=max_audio_clip_s,
            sample_rate=feature_extractor.sampling_rate,
        )

    @classmethod
    def get_generation_prompt(
        cls,
        audio: np.ndarray,
        model_config: ModelConfig,
        stt_config: SpeechToTextConfig,
        language: str | None,
        task_type: Literal["transcribe", "translate"],
        request_prompt: str,
        to_language: str | None,
    ) -> PromptType:
        """Get the generation prompt to be used for transcription requests."""
        tokenizer = cached_tokenizer_from_config(model_config)
        audio_token = cls._get_audio_token(model_config)

        if task_type == "translate":
            full_lang_name_to = cls.supported_languages.get(to_language, to_language)
            user_content = f"{audio_token}translate the speech to {full_lang_name_to}"
        elif task_type == "transcribe":
            user_content = (
                f"{audio_token}can you transcribe the speech into a written format?"
            )
        else:
            raise ValueError(f"Unsupported task type {task_type}")

        messages = [{"role": "user", "content": user_content}]
        prompt = tokenizer.apply_chat_template(
            messages, tokenize=False, add_generation_prompt=True
        )

        prompt_token_ids = tokenizer.encode(prompt)
        prompt_dict = {
            "prompt_token_ids": prompt_token_ids,
            "multi_modal_data": {"audio": audio},
        }
        return cast(PromptType, prompt_dict)

audio_tower instance-attribute

audio_tower = GlmAsrEncoder(audio_config)

config instance-attribute

config = config

language_model instance-attribute

language_model = init_vllm_registered_model(
    vllm_config=vllm_config,
    hf_config=text_config,
    prefix=maybe_prefix(prefix, "language_model"),
    architectures=["LlamaForCausalLM"],
)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

multi_modal_projector instance-attribute

multi_modal_projector = GlmAsrMultiModalProjector(
    config,
    quant_config=quant_config,
    prefix=maybe_prefix(prefix, "multi_modal_projector"),
)

multimodal_config instance-attribute

multimodal_config = multimodal_config

packed_modules_mapping class-attribute instance-attribute

packed_modules_mapping = {
    "qkv_proj": ["q_proj", "k_proj", "v_proj"],
    "gate_up_proj": ["gate_proj", "up_proj"],
}

quant_config instance-attribute

quant_config = quant_config

supported_languages class-attribute instance-attribute

supported_languages = ISO639_1_SUPPORTED_LANGS

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/glmasr.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    config = vllm_config.model_config.hf_config
    quant_config = vllm_config.quant_config
    multimodal_config = vllm_config.model_config.multimodal_config
    self.config = config
    self.multimodal_config = multimodal_config

    self.audio_tower = GlmAsrEncoder(config.audio_config)
    self.multi_modal_projector = GlmAsrMultiModalProjector(
        config,
        quant_config=quant_config,
        prefix=maybe_prefix(prefix, "multi_modal_projector"),
    )
    self.quant_config = quant_config

    self.language_model = init_vllm_registered_model(
        vllm_config=vllm_config,
        hf_config=config.text_config,
        prefix=maybe_prefix(prefix, "language_model"),
        architectures=["LlamaForCausalLM"],
    )

    self.make_empty_intermediate_tensors = (
        self.language_model.make_empty_intermediate_tensors
    )

_get_audio_token classmethod

_get_audio_token(model_config: ModelConfig) -> str

Get the audio token from processor.

Similar to get_placeholder_str but returns single token.

Source code in vllm/model_executor/models/glmasr.py
@classmethod
def _get_audio_token(cls, model_config: ModelConfig) -> str:
    """Get the audio token from processor.

    Similar to get_placeholder_str but returns single token.
    """
    processor = cached_processor_from_config(model_config)
    return getattr(processor, "audio_token", "<|pad|>")

_parse_and_validate_audio_input

_parse_and_validate_audio_input(
    **kwargs: object,
) -> GlmAsrInputs | None
Source code in vllm/model_executor/models/glmasr.py
def _parse_and_validate_audio_input(self, **kwargs: object) -> GlmAsrInputs | None:
    audio_embeds = kwargs.pop("audio_embeds", None)
    if audio_embeds is not None:
        return GlmAsrEmbeddingInputs(type="audio_embeds", audio_embeds=audio_embeds)

    input_features = kwargs.pop("input_features", None)
    if input_features is None:
        return None

    return GlmAsrFeatureInputs(
        type="audio_features",
        input_features=input_features,
        feature_attention_mask=kwargs.pop("feature_attention_mask", None),
        chunk_counts=kwargs.pop("chunk_counts", None),
    )

_process_audio_input

_process_audio_input(
    audio_input: GlmAsrInputs,
) -> Tensor | tuple[Tensor, ...]
Source code in vllm/model_executor/models/glmasr.py
def _process_audio_input(
    self, audio_input: GlmAsrInputs
) -> torch.Tensor | tuple[torch.Tensor, ...]:
    if audio_input["type"] == "audio_embeds":
        return tuple(audio_input["audio_embeds"])

    input_features = audio_input["input_features"]
    feature_attention_mask = audio_input["feature_attention_mask"]

    if isinstance(input_features, list):
        input_features = torch.cat(input_features, dim=0)
        feature_attention_mask = torch.cat(feature_attention_mask, dim=0)

    num_chunks = input_features.shape[0]
    chunk_counts = _normalize_chunk_counts(
        audio_input.get("chunk_counts"), num_chunks=num_chunks
    )

    audio_hidden_states = self.audio_tower(input_features).last_hidden_state
    audio_hidden_states = audio_hidden_states.reshape(
        num_chunks,
        -1,
        self.config.audio_config.intermediate_size,
    )
    audio_features = self.multi_modal_projector(audio_hidden_states)

    merge_factor = getattr(self.config, "merge_factor", DEFAULT_MERGE_FACTOR)
    conv_params = getattr(self.config, "conv_params", DEFAULT_CONV_PARAMS)

    audio_output_lengths = _get_audio_output_lengths_for_tower(
        self.audio_tower,
        feature_attention_mask.sum(-1),
        merge_factor,
        conv_params,
    )

    masked_audio_features = _flatten_audio_features_by_length(
        audio_features, audio_output_lengths
    )

    chunk_embeddings = torch.split(
        masked_audio_features, audio_output_lengths.flatten().tolist()
    )
    return _group_audio_embeddings(chunk_embeddings, chunk_counts)

compute_logits

compute_logits(hidden_states: Tensor) -> Tensor | None
Source code in vllm/model_executor/models/glmasr.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
) -> torch.Tensor | None:
    return self.language_model.compute_logits(hidden_states)

embed_multimodal

embed_multimodal(**kwargs: object) -> MultiModalEmbeddings
Source code in vllm/model_executor/models/glmasr.py
def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings:
    audio_input = self._parse_and_validate_audio_input(**kwargs)
    if audio_input is None:
        return []
    masked_audio_features = self._process_audio_input(audio_input)
    return masked_audio_features

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: IntermediateTensors | None = None,
    inputs_embeds: Tensor | None = None,
    **kwargs: object,
) -> Tensor | IntermediateTensors
Source code in vllm/model_executor/models/glmasr.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: IntermediateTensors | None = None,
    inputs_embeds: torch.Tensor | None = None,
    **kwargs: object,
) -> torch.Tensor | IntermediateTensors:
    if intermediate_tensors is not None:
        inputs_embeds = None

    hidden_states = self.language_model.model(
        input_ids,
        positions,
        intermediate_tensors,
        inputs_embeds=inputs_embeds,
    )
    return hidden_states

get_generation_prompt classmethod

get_generation_prompt(
    audio: ndarray,
    model_config: ModelConfig,
    stt_config: SpeechToTextConfig,
    language: str | None,
    task_type: Literal["transcribe", "translate"],
    request_prompt: str,
    to_language: str | None,
) -> PromptType

Get the generation prompt to be used for transcription requests.

Source code in vllm/model_executor/models/glmasr.py
@classmethod
def get_generation_prompt(
    cls,
    audio: np.ndarray,
    model_config: ModelConfig,
    stt_config: SpeechToTextConfig,
    language: str | None,
    task_type: Literal["transcribe", "translate"],
    request_prompt: str,
    to_language: str | None,
) -> PromptType:
    """Get the generation prompt to be used for transcription requests."""
    tokenizer = cached_tokenizer_from_config(model_config)
    audio_token = cls._get_audio_token(model_config)

    if task_type == "translate":
        full_lang_name_to = cls.supported_languages.get(to_language, to_language)
        user_content = f"{audio_token}translate the speech to {full_lang_name_to}"
    elif task_type == "transcribe":
        user_content = (
            f"{audio_token}can you transcribe the speech into a written format?"
        )
    else:
        raise ValueError(f"Unsupported task type {task_type}")

    messages = [{"role": "user", "content": user_content}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

    prompt_token_ids = tokenizer.encode(prompt)
    prompt_dict = {
        "prompt_token_ids": prompt_token_ids,
        "multi_modal_data": {"audio": audio},
    }
    return cast(PromptType, prompt_dict)

get_language_model

get_language_model() -> Module
Source code in vllm/model_executor/models/glmasr.py
def get_language_model(self) -> torch.nn.Module:
    return self.language_model

get_mm_mapping

get_mm_mapping() -> MultiModelKeys
Source code in vllm/model_executor/models/glmasr.py
def get_mm_mapping(self) -> MultiModelKeys:
    return MultiModelKeys.from_string_field(
        language_model="language_model.",
        connector="multi_modal_projector.",
        tower_model="audio_tower.",
    )

get_placeholder_str classmethod

get_placeholder_str(modality: str, i: int) -> str | None
Source code in vllm/model_executor/models/glmasr.py
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
    if modality.startswith("audio"):
        return "<|begin_of_audio|><|pad|><|end_of_audio|>"

    raise ValueError("Only audio modality is supported")

get_speech_to_text_config classmethod

get_speech_to_text_config(
    model_config: ModelConfig, task_type: str
) -> SpeechToTextConfig
Source code in vllm/model_executor/models/glmasr.py
@classmethod
def get_speech_to_text_config(
    cls, model_config: ModelConfig, task_type: str
) -> SpeechToTextConfig:
    processor = cached_processor_from_config(model_config)
    feature_extractor = processor.feature_extractor
    max_audio_clip_s = getattr(processor, "max_audio_len", DEFAULT_MAX_AUDIO_LEN_S)
    return SpeechToTextConfig(
        max_audio_clip_s=max_audio_clip_s,
        sample_rate=feature_extractor.sampling_rate,
    )

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/glmasr.py
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
    skip_prefixes = ["audio_tower.embed_positions"]
    loader = AutoWeightsLoader(self, skip_prefixes=skip_prefixes)
    return loader.load_weights(weights)

GlmAsrMultiModalDataParser

Bases: AudioFlamingo3MultiModalDataParser

Source code in vllm/model_executor/models/glmasr.py
class GlmAsrMultiModalDataParser(AudioFlamingo3MultiModalDataParser):
    def _parse_audio_data(
        self,
        data: dict[str, torch.Tensor] | ModalityData[Any],
    ) -> ModalityDataItems[Any, Any] | None:
        if isinstance(data, dict):
            return DictEmbeddingItems(
                data,
                modality="audio",
                required_fields={"audio_embeds"},
                fields_factory=_glmasr_field_config,
            )
        return super()._parse_audio_data(data)

_parse_audio_data

_parse_audio_data(
    data: dict[str, Tensor] | ModalityData[Any],
) -> ModalityDataItems[Any, Any] | None
Source code in vllm/model_executor/models/glmasr.py
def _parse_audio_data(
    self,
    data: dict[str, torch.Tensor] | ModalityData[Any],
) -> ModalityDataItems[Any, Any] | None:
    if isinstance(data, dict):
        return DictEmbeddingItems(
            data,
            modality="audio",
            required_fields={"audio_embeds"},
            fields_factory=_glmasr_field_config,
        )
    return super()._parse_audio_data(data)

GlmAsrMultiModalProcessor

Bases: AudioFlamingo3MultiModalProcessor

Source code in vllm/model_executor/models/glmasr.py
class GlmAsrMultiModalProcessor(AudioFlamingo3MultiModalProcessor):
    def _get_data_parser(self) -> MultiModalDataParser:
        feature_extractor = self.info.get_feature_extractor()
        return GlmAsrMultiModalDataParser(target_sr=feature_extractor.sampling_rate)

    def _calculate_chunk_counts(
        self,
        audio_list: list[Any],
        feature_extractor: WhisperFeatureExtractor,
        processor: GlmAsrProcessor,
    ) -> list[int]:
        """Calculate chunk counts for each audio."""
        sampling_rate = feature_extractor.sampling_rate
        chunk_length = feature_extractor.chunk_length
        max_audio_len = getattr(processor, "max_audio_len", DEFAULT_MAX_AUDIO_LEN_S)
        window_size = int(sampling_rate * chunk_length)
        max_windows = int(max_audio_len // chunk_length)

        chunk_counts = []
        for audio in audio_list:
            n_samples = len(audio) if isinstance(audio, list) else audio.shape[0]
            n_chunks = max(1, (n_samples + window_size - 1) // window_size)
            chunk_counts.append(min(n_chunks, max_windows))
        return chunk_counts

    def _call_hf_processor(
        self,
        prompt: str,
        mm_data: dict[str, object],
        mm_kwargs: Mapping[str, Any],
        tok_kwargs: Mapping[str, object],
    ) -> BatchFeature:
        # Normalize input: handle deprecated key and list conversion.
        if "audios" in mm_data:
            mm_data["audio"] = mm_data.pop("audios")

        audio = mm_data.get("audio", [])
        audio_list = [audio] if audio and not isinstance(audio, list) else audio

        # Early return for text-only.
        if not audio_list:
            prompt_ids = self.info.get_tokenizer().encode(prompt)
            prompt_ids = self._apply_hf_processor_tokens_only(prompt_ids)
            return BatchFeature(dict(input_ids=[prompt_ids]), tensor_type="pt")

        # Get processor for chunk counts calculation
        processor = self.info.get_hf_processor(**mm_kwargs)

        # Call parent method (it will handle sampling_rate)
        outputs = super()._call_hf_processor(
            prompt=prompt,
            mm_data=mm_data,
            mm_kwargs=mm_kwargs,
            tok_kwargs=tok_kwargs,
        )

        # Postprocess: rename mask and add chunk counts.
        if "input_features_mask" in outputs:
            outputs["feature_attention_mask"] = outputs.pop("input_features_mask")

        # Override chunk counts calculation with GLM-ASR specific logic
        chunk_counts = self._calculate_chunk_counts(
            audio_list, processor.feature_extractor, processor
        )
        outputs["chunk_counts"] = torch.tensor(chunk_counts, dtype=torch.long)

        return outputs

    def _get_mm_fields_config(
        self,
        hf_inputs: BatchFeature,
        hf_processor_mm_kwargs: Mapping[str, object],
    ) -> Mapping[str, MultiModalFieldConfig]:
        return _glmasr_field_config(hf_inputs)

    def _get_prompt_updates(
        self,
        mm_items: MultiModalDataItems,
        hf_processor_mm_kwargs: Mapping[str, object],
        out_mm_kwargs: MultiModalKwargsItems,
    ) -> Sequence[PromptUpdate]:
        processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
        tokenizer = self.info.get_tokenizer()
        vocab = tokenizer.get_vocab()
        config = self.info.get_hf_config()

        audio_token = getattr(processor, "audio_token", "<|pad|>")
        audio_token_id = vocab.get(audio_token)
        if audio_token_id is None:
            audio_token_id = processor.audio_token_id

        merge_factor = getattr(config, "merge_factor", DEFAULT_MERGE_FACTOR)
        out_mm_data = out_mm_kwargs.get_data()
        feature_attention_mask = out_mm_data.get("feature_attention_mask")
        chunk_counts = out_mm_data.get("chunk_counts")

        def get_replacement_glmasr(item_idx: int):
            conv_params = getattr(config, "conv_params", DEFAULT_CONV_PARAMS)
            audio_embeds = out_mm_data.get("audio_embeds")
            num_features = _get_num_features_for_item(
                feature_attention_mask,
                chunk_counts,
                item_idx,
                audio_embeds,
                merge_factor,
                conv_params,
            )

            if num_features == 0:
                raise ValueError("Audio is too short")

            audio_tokens = [audio_token_id] * int(num_features)
            return PromptUpdateDetails.select_token_id(
                audio_tokens,
                embed_token_id=audio_token_id,
            )

        return [
            PromptReplacement(
                modality="audio",
                target=audio_token,
                replacement=get_replacement_glmasr,
            )
        ]

_calculate_chunk_counts

_calculate_chunk_counts(
    audio_list: list[Any],
    feature_extractor: WhisperFeatureExtractor,
    processor: GlmAsrProcessor,
) -> list[int]

Calculate chunk counts for each audio.

Source code in vllm/model_executor/models/glmasr.py
def _calculate_chunk_counts(
    self,
    audio_list: list[Any],
    feature_extractor: WhisperFeatureExtractor,
    processor: GlmAsrProcessor,
) -> list[int]:
    """Calculate chunk counts for each audio."""
    sampling_rate = feature_extractor.sampling_rate
    chunk_length = feature_extractor.chunk_length
    max_audio_len = getattr(processor, "max_audio_len", DEFAULT_MAX_AUDIO_LEN_S)
    window_size = int(sampling_rate * chunk_length)
    max_windows = int(max_audio_len // chunk_length)

    chunk_counts = []
    for audio in audio_list:
        n_samples = len(audio) if isinstance(audio, list) else audio.shape[0]
        n_chunks = max(1, (n_samples + window_size - 1) // window_size)
        chunk_counts.append(min(n_chunks, max_windows))
    return chunk_counts

_call_hf_processor

_call_hf_processor(
    prompt: str,
    mm_data: dict[str, object],
    mm_kwargs: Mapping[str, Any],
    tok_kwargs: Mapping[str, object],
) -> BatchFeature
Source code in vllm/model_executor/models/glmasr.py
def _call_hf_processor(
    self,
    prompt: str,
    mm_data: dict[str, object],
    mm_kwargs: Mapping[str, Any],
    tok_kwargs: Mapping[str, object],
) -> BatchFeature:
    # Normalize input: handle deprecated key and list conversion.
    if "audios" in mm_data:
        mm_data["audio"] = mm_data.pop("audios")

    audio = mm_data.get("audio", [])
    audio_list = [audio] if audio and not isinstance(audio, list) else audio

    # Early return for text-only.
    if not audio_list:
        prompt_ids = self.info.get_tokenizer().encode(prompt)
        prompt_ids = self._apply_hf_processor_tokens_only(prompt_ids)
        return BatchFeature(dict(input_ids=[prompt_ids]), tensor_type="pt")

    # Get processor for chunk counts calculation
    processor = self.info.get_hf_processor(**mm_kwargs)

    # Call parent method (it will handle sampling_rate)
    outputs = super()._call_hf_processor(
        prompt=prompt,
        mm_data=mm_data,
        mm_kwargs=mm_kwargs,
        tok_kwargs=tok_kwargs,
    )

    # Postprocess: rename mask and add chunk counts.
    if "input_features_mask" in outputs:
        outputs["feature_attention_mask"] = outputs.pop("input_features_mask")

    # Override chunk counts calculation with GLM-ASR specific logic
    chunk_counts = self._calculate_chunk_counts(
        audio_list, processor.feature_extractor, processor
    )
    outputs["chunk_counts"] = torch.tensor(chunk_counts, dtype=torch.long)

    return outputs

_get_data_parser

_get_data_parser() -> MultiModalDataParser
Source code in vllm/model_executor/models/glmasr.py
def _get_data_parser(self) -> MultiModalDataParser:
    feature_extractor = self.info.get_feature_extractor()
    return GlmAsrMultiModalDataParser(target_sr=feature_extractor.sampling_rate)

_get_mm_fields_config

_get_mm_fields_config(
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]
Source code in vllm/model_executor/models/glmasr.py
def _get_mm_fields_config(
    self,
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
    return _glmasr_field_config(hf_inputs)

_get_prompt_updates

_get_prompt_updates(
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]
Source code in vllm/model_executor/models/glmasr.py
def _get_prompt_updates(
    self,
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]:
    processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
    tokenizer = self.info.get_tokenizer()
    vocab = tokenizer.get_vocab()
    config = self.info.get_hf_config()

    audio_token = getattr(processor, "audio_token", "<|pad|>")
    audio_token_id = vocab.get(audio_token)
    if audio_token_id is None:
        audio_token_id = processor.audio_token_id

    merge_factor = getattr(config, "merge_factor", DEFAULT_MERGE_FACTOR)
    out_mm_data = out_mm_kwargs.get_data()
    feature_attention_mask = out_mm_data.get("feature_attention_mask")
    chunk_counts = out_mm_data.get("chunk_counts")

    def get_replacement_glmasr(item_idx: int):
        conv_params = getattr(config, "conv_params", DEFAULT_CONV_PARAMS)
        audio_embeds = out_mm_data.get("audio_embeds")
        num_features = _get_num_features_for_item(
            feature_attention_mask,
            chunk_counts,
            item_idx,
            audio_embeds,
            merge_factor,
            conv_params,
        )

        if num_features == 0:
            raise ValueError("Audio is too short")

        audio_tokens = [audio_token_id] * int(num_features)
        return PromptUpdateDetails.select_token_id(
            audio_tokens,
            embed_token_id=audio_token_id,
        )

    return [
        PromptReplacement(
            modality="audio",
            target=audio_token,
            replacement=get_replacement_glmasr,
        )
    ]

GlmAsrMultiModalProjector

Bases: Module

Source code in vllm/model_executor/models/glmasr.py
class GlmAsrMultiModalProjector(nn.Module):
    def __init__(
        self,
        config: GlmAsrConfig,
        quant_config: QuantizationConfig | None = None,
        prefix: str = "",
    ):
        super().__init__()
        self.linear_1 = ColumnParallelLinear(
            input_size=config.audio_config.intermediate_size,
            output_size=config.text_config.hidden_size * 2,
            quant_config=quant_config,
            prefix=f"{prefix}.linear_1",
        )
        self.act = get_act_fn(config.projector_hidden_act)
        self.linear_2 = RowParallelLinear(
            input_size=config.text_config.hidden_size * 2,
            output_size=config.text_config.hidden_size,
            quant_config=quant_config,
            prefix=f"{prefix}.linear_2",
        )

    def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
        hidden_states, _ = self.linear_1(audio_features)
        hidden_states = self.act(hidden_states)
        hidden_states, _ = self.linear_2(hidden_states)
        return hidden_states

act instance-attribute

act = get_act_fn(projector_hidden_act)

linear_1 instance-attribute

linear_1 = ColumnParallelLinear(
    input_size=intermediate_size,
    output_size=hidden_size * 2,
    quant_config=quant_config,
    prefix=f"{prefix}.linear_1",
)

linear_2 instance-attribute

linear_2 = RowParallelLinear(
    input_size=hidden_size * 2,
    output_size=hidden_size,
    quant_config=quant_config,
    prefix=f"{prefix}.linear_2",
)

__init__

__init__(
    config: GlmAsrConfig,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/glmasr.py
def __init__(
    self,
    config: GlmAsrConfig,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
):
    super().__init__()
    self.linear_1 = ColumnParallelLinear(
        input_size=config.audio_config.intermediate_size,
        output_size=config.text_config.hidden_size * 2,
        quant_config=quant_config,
        prefix=f"{prefix}.linear_1",
    )
    self.act = get_act_fn(config.projector_hidden_act)
    self.linear_2 = RowParallelLinear(
        input_size=config.text_config.hidden_size * 2,
        output_size=config.text_config.hidden_size,
        quant_config=quant_config,
        prefix=f"{prefix}.linear_2",
    )

forward

forward(audio_features: Tensor) -> Tensor
Source code in vllm/model_executor/models/glmasr.py
def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
    hidden_states, _ = self.linear_1(audio_features)
    hidden_states = self.act(hidden_states)
    hidden_states, _ = self.linear_2(hidden_states)
    return hidden_states

GlmAsrProcessingInfo

Bases: AudioFlamingo3ProcessingInfo

Source code in vllm/model_executor/models/glmasr.py
class GlmAsrProcessingInfo(AudioFlamingo3ProcessingInfo):
    def get_hf_config(self) -> GlmAsrConfig:
        return self.ctx.get_hf_config(GlmAsrConfig)

    def get_hf_processor(self, **kwargs: object) -> GlmAsrProcessor:
        return self.ctx.get_hf_processor(GlmAsrProcessor, **kwargs)

    def get_feature_extractor(self, **kwargs: object) -> WhisperFeatureExtractor:
        # Reuse parent implementation, but add type annotation and assertion
        feature_extractor = super().get_feature_extractor(**kwargs)
        assert isinstance(feature_extractor, WhisperFeatureExtractor)
        return feature_extractor

get_feature_extractor

get_feature_extractor(
    **kwargs: object,
) -> WhisperFeatureExtractor
Source code in vllm/model_executor/models/glmasr.py
def get_feature_extractor(self, **kwargs: object) -> WhisperFeatureExtractor:
    # Reuse parent implementation, but add type annotation and assertion
    feature_extractor = super().get_feature_extractor(**kwargs)
    assert isinstance(feature_extractor, WhisperFeatureExtractor)
    return feature_extractor

get_hf_config

get_hf_config() -> GlmAsrConfig
Source code in vllm/model_executor/models/glmasr.py
def get_hf_config(self) -> GlmAsrConfig:
    return self.ctx.get_hf_config(GlmAsrConfig)

get_hf_processor

get_hf_processor(**kwargs: object) -> GlmAsrProcessor
Source code in vllm/model_executor/models/glmasr.py
def get_hf_processor(self, **kwargs: object) -> GlmAsrProcessor:
    return self.ctx.get_hf_processor(GlmAsrProcessor, **kwargs)