def main(args: argparse.Namespace):
# Set multiprocessing start method to 'spawn' for clean process isolation
# This ensures each subprocess starts fresh without inheriting state
multiprocessing.set_start_method("spawn", force=True)
engine_args = EngineArgs.from_cli_args(args)
def create_llm_and_measure_startup():
"""
Create LLM instance in a subprocess and measure startup time.
Returns timing metrics, using subprocess for complete isolation.
"""
# Convert engine_args to dictionary for pickling
engine_args_dict = dataclasses.asdict(engine_args)
# Create a queue for inter-process communication
result_queue = multiprocessing.Queue()
process = multiprocessing.Process(
target=run_startup_in_subprocess,
args=(
engine_args_dict,
result_queue,
),
)
process.start()
process.join()
if not result_queue.empty():
result = result_queue.get()
if result is None:
if not result_queue.empty():
error_msg = result_queue.get()
raise RuntimeError(f"Subprocess failed: {error_msg}")
else:
raise RuntimeError("Subprocess failed with unknown error")
return result
else:
raise RuntimeError("Subprocess did not return a result")
os.environ["VLLM_ENABLE_V1_MULTIPROCESSING"] = "0"
print("Setting VLLM_ENABLE_V1_MULTIPROCESSING=0 to collect startup metrics.\n")
print("Measuring cold startup time...\n")
cold_startup_times = []
cold_compilation_times = []
for i in tqdm(range(args.num_iters_cold), desc="Cold startup iterations"):
with cold_startup():
metrics = create_llm_and_measure_startup()
cold_startup_times.append(metrics["total_startup_time"])
cold_compilation_times.append(metrics["compilation_time"])
# Warmup for warm startup
print("\nWarming up for warm startup measurement...\n")
for _ in tqdm(range(args.num_iters_warmup), desc="Warmup iterations"):
create_llm_and_measure_startup()
print("\nMeasuring warm startup time...\n")
warm_startup_times = []
warm_compilation_times = []
for i in tqdm(range(args.num_iters_warm), desc="Warm startup iterations"):
metrics = create_llm_and_measure_startup()
warm_startup_times.append(metrics["total_startup_time"])
warm_compilation_times.append(metrics["compilation_time"])
# Calculate statistics
cold_startup_array = np.array(cold_startup_times)
cold_compilation_array = np.array(cold_compilation_times)
warm_startup_array = np.array(warm_startup_times)
warm_compilation_array = np.array(warm_compilation_times)
avg_cold_startup = np.mean(cold_startup_array)
avg_cold_compilation = np.mean(cold_compilation_array)
avg_warm_startup = np.mean(warm_startup_array)
avg_warm_compilation = np.mean(warm_compilation_array)
percentages = [10, 25, 50, 75, 90, 99]
cold_startup_percentiles = np.percentile(cold_startup_array, percentages)
cold_compilation_percentiles = np.percentile(cold_compilation_array, percentages)
warm_startup_percentiles = np.percentile(warm_startup_array, percentages)
warm_compilation_percentiles = np.percentile(warm_compilation_array, percentages)
print("\n" + "=" * 60)
print("STARTUP TIME BENCHMARK RESULTS")
print("=" * 60)
# Cold startup statistics
print("\nCOLD STARTUP:")
print(f"Avg total startup time: {avg_cold_startup:.2f} seconds")
print(f"Avg compilation time: {avg_cold_compilation:.2f} seconds")
print("Startup time percentiles:")
for percentage, percentile in zip(percentages, cold_startup_percentiles):
print(f" {percentage}%: {percentile:.2f} seconds")
print("Compilation time percentiles:")
for percentage, percentile in zip(percentages, cold_compilation_percentiles):
print(f" {percentage}%: {percentile:.2f} seconds")
# Warm startup statistics
print("\nWARM STARTUP:")
print(f"Avg total startup time: {avg_warm_startup:.2f} seconds")
print(f"Avg compilation time: {avg_warm_compilation:.2f} seconds")
print("Startup time percentiles:")
for percentage, percentile in zip(percentages, warm_startup_percentiles):
print(f" {percentage}%: {percentile:.2f} seconds")
print("Compilation time percentiles:")
for percentage, percentile in zip(percentages, warm_compilation_percentiles):
print(f" {percentage}%: {percentile:.2f} seconds")
print("=" * 60)
# Output JSON results if specified
if args.output_json:
results = {
"avg_cold_startup_time": float(avg_cold_startup),
"avg_cold_compilation_time": float(avg_cold_compilation),
"cold_startup_times": cold_startup_times,
"cold_compilation_times": cold_compilation_times,
"cold_startup_percentiles": dict(
zip(percentages, cold_startup_percentiles.tolist())
),
"cold_compilation_percentiles": dict(
zip(percentages, cold_compilation_percentiles.tolist())
),
"avg_warm_startup_time": float(avg_warm_startup),
"avg_warm_compilation_time": float(avg_warm_compilation),
"warm_startup_times": warm_startup_times,
"warm_compilation_times": warm_compilation_times,
"warm_startup_percentiles": dict(
zip(percentages, warm_startup_percentiles.tolist())
),
"warm_compilation_percentiles": dict(
zip(percentages, warm_compilation_percentiles.tolist())
),
}
with open(args.output_json, "w") as f:
json.dump(results, f, indent=4)
save_to_pytorch_benchmark_format(args, results)